
B.Sc. PHYSICS SYLLABUS UNDER CBCS

For Mathematics Combinations

[2020-21 Batch onwards]

II Year B.Sc.-Physics: IV Semester Course V: MODERN PHYSICS

Work load:60hrs per semester 4 hrs/week

Course outcomes:

On successful completion of this course, the students will be able to:

- Develop an understanding on the concepts of Atomic and Modern Physics, basic elementary quantum mechanics and nuclear physics.
- Develop critical understanding of concept of Matter waves and Uncertainty principle.
- Get familiarized with the principles of quantum mechanics and the formulation of Schrodinger wave equation and its applications.
- Examine the basic properties of nuclei, characteristics of Nuclear forces, salient features of Nuclear models and different nuclear radiation detectors.
- Classify Elementary particles based on their mass, charge, spin, half life and interaction.
- Get familiarized with the nano materials, their unique properties and applications.
- Increase the awareness and appreciation of superconductors and their practical applications.

UNIT-I:

1. Atomic and Molecular Physics:(12 hrs)

Vector atom model and Stern-Gerlach experiment, Quantum numbers associated with it, Angular momentum of the atom, Coupling schemes, Spectral terms and spectral notations, Selection rules, Intensity rules, Fine structure of Sodium D-lines, Zeeman effect, Experimental arrangement to study Zeeman effect; Raman effect, Characteristics of Raman effect, Experimental arrangement to study Raman effect, Quantum theory of Raman effect, Applications of Raman effect.

UNIT-II:

2. Matter waves&Uncertainty Principle: (12 hrs)

Matter waves, de Broglie's hypothesis, Wave length of matter waves, Properties of matter waves, Davisson and Germer's experiment, Phase and group velocities, Heisenberg's uncertainty principle for position and momentum& energy and time, Illustration of uncertainty principle using diffraction of beam of electrons (Diffraction by a single slit) and photons (Gamma ray microscope), Bohr's principle of complementarity.

UNIT-III:

3. Quantum (Wave) Mechanics:(12 hrs)

Basic postulates of quantum mechanics, Schrodinger time independent and time dependent wave equations-Derivations, Physical interpretation of wave function, Eigen functions, Eigen values, Application of Schrodinger wave equation to (i) one dimensional potential box of infinite height(InfinitePotential Well) and (ii) one dimensional harmonic oscillator

UNIT-IV:

4. Nuclear Physics:(12 hrs)

Nuclear Structure: General Properties of Nuclei, Mass defect, Binding energy; Nuclear forces: Characteristics of nuclear forces- Yukawa's meson theory; Nuclear Models: Liquid drop model, The Shell model, Magic numbers; Nuclear Radiation detectors: G.M. Counter, Cloud chamber, Solid State detector; Elementary Particles: Elementary Particles and their classification

UNIT-V:

5. Nano materials:(7hrs)

Nanomaterials – Introduction, Electron confinement, Size effect, Surface to volume ratio, Classification of nano materials – (0D, 1D, 2D); Quantum dots, Nano wires, Fullerene, CNT, Graphene(Mention of structures and properties), Distinct properties of nano materials (Mention-mechanical, optical, electrical, and magnetic properties); Mention of applications of

nano materials: (Fuel cells, Phosphors for HD TV, Next Generation Computer chips, elimination of pollutants, sensors)

6. Superconductivity:

(5 hrs)

Introduction to Superconductivity, Experimental results-critical temperature, critical magnetic field, Meissner effect, Isotope effect, Type I and Type II superconductors, BCS theory (elementary ideas only), Applications of superconductors

REFERENCE BOOKS

- BSc Physics, Vol.4, Telugu Akademy, Hyderabad
- Atomic Physics by J.B. Rajam; S.Chand& Co.,
- ❖ Modern Physics by R. Murugeshan and Kiruthiga Siva Prasath. S. Chand & Co.
- Concepts of Modern Physics by Arthur Beiser. Tata McGraw-Hill Edition.
- Nuclear Physics, D.C. Tayal, Himalaya Publishing House.
- S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publ.Co.)
- K.K.Chattopadhyay&A.N.Banerjee, Introd.to Nanoscience and Technology(PHI LearningPriv.Limited).
- Nano materials, A K Bandopadhyay. New Age International Pvt Ltd (2007)
- Textbook of Nanoscience and Nanotechnology, BS Murthy, P Shankar, Baldev Raj, BB Rath

and J Murday-Universities Press-IIM

Practical Course V: Modern Physics

Work load: 30 hrs 2 hrs/week

On successful completion of this practical course, the student will be able to;

- Measure charge of an electron ande/m value of an electron by Thomson method.
- > Understand how the Planck's constant can be determined using Photocell and LEDs.
- > Study the absorption of α -rays and β -rays, Range of β -particles and the characteristics of GM counter
- > Determine the Energy gap of a semiconductor using thermistor and junction diode.

Minimum of 6 experiments to be done and recorded

- 1. e/m of an electron by Thomson method.
- 2. Determination of Planck's Constant (photocell).
- Verification of inverse square law of light using photovoltaic cell.
- 4. Determination of the Planck's constant using LEDs of at least 4 different colours.
- Determination of work function of material of filament of directly heated vacuum diode.
- 6. Study of absorption of α -rays.
- Study of absorption of β-rays.
- Determination of Range of β-particles.
- 9. Determination of M & H.
- Analysis of powder X-ray diffraction pattern to determine properties of crystals.
- 11. Energy gap of a semiconductor using junction diode.
- 12. Energy gap of a semiconductor using thermistor
- 13. GM counter characteristics

RECOMMENDED CO-CURRICULAR ACTIVITIES:

MEASURABLE

- Assignments (in writing and doing forms on the aspects of syllabus content and outside the syllabus content. Shall be individual and challenging)
- Student seminars (on topics of the syllabus and related aspects (individual activity)

- Quiz (on topics where the content can be compiled by smaller aspects and data (Individuals or groups as teams))
- Field studies (individual observations and recordings as per syllabus content and related areas (Individual or team activity)
- Study projects (by very small groups of students on selected local real-time problems pertaining to syllabus or related areas. The individual participation and contribution of students shall be ensured (team activity)

GENERAL

- Group Discussion
- Visit to Research Stations/laboratories and related industries
- Others

RECOMMENDED ASSESSMENT METHODS

Some of the following suggested assessment methodologies could be adopted;

- The oral and written examinations (Scheduled and surprise tests),
- Practical assignments and laboratory reports,
- Efficient delivery using seminar presentations,
- Viva voce interviews.
